Spatially resolved photoexcited charge-carrier dynamics in phase-engineered monolayer MoS2.

نویسندگان

  • Hisato Yamaguchi
  • Jean-Christophe Blancon
  • Rajesh Kappera
  • Sidong Lei
  • Sina Najmaei
  • Benjamin D Mangum
  • Gautam Gupta
  • Pulickel M Ajayan
  • Jun Lou
  • Manish Chhowalla
  • Jared J Crochet
  • Aditya D Mohite
چکیده

A fundamental understanding of the intrinsic optoelectronic properties of atomically thin transition-metal dichalcogenides (TMDs) is crucial for its integration into high performance semiconductor devices. Here, we investigate the transport properties of chemical vapor deposition (CVD) grown monolayer molybdenum disulfide (MoS2) under photoexcitation using correlated scanning photocurrent microscopy and photoluminescence imaging. We examined the effect of local phase transformation underneath the metal electrodes on the generation of photocurrent across the channel length with diffraction-limited spatial resolution. While maximum photocurrent generation occurs at the Schottky contacts of semiconducting (2H-phase) MoS2, after the metallic phase transformation (1T-phase), the photocurrent peak is observed toward the center of the device channel, suggesting a strong reduction of native Schottky barriers. Analysis using the bias and position dependence of the photocurrent indicates that the Schottky barrier heights are a few millielectron volts for 1T- and ∼ 200 meV for 2H-contacted devices. We also demonstrate that a reduction of native Schottky barriers in a 1T device enhances the photoresponsivity by more than 1 order of magnitude, a crucial parameter in achieving high-performance optoelectronic devices. The obtained results pave a way for the fundamental understanding of intrinsic optoelectronic properties of atomically thin TMDs where ohmic contacts are necessary for achieving high-efficiency devices with low power consumption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2.

In this Letter, we present nondegenerate ultrafast optical pump-probe studies of the carrier recombination dynamics in MoS2 monolayers. By tuning the probe to wavelengths much longer than the exciton line, we make the probe transmission sensitive to the total population of photoexcited electrons and holes. Our measurement reveals two distinct time scales over which the photoexcited electrons an...

متن کامل

Electron dynamics in MoS2-graphite heterostructures.

The electron dynamics in heterostructures formed by multilayer graphite and monolayer or bulk MoS2 were studied by femtosecond transient absorption measurements. Samples of monolayer MoS2-multilayer graphite and bulk MoS2-multilayer graphite were fabricated by exfoliation and dry transfer techniques. Ultrafast laser pulses were used to inject electron-hole pairs into monolayer or bulk MoS2. The...

متن کامل

Ultrafast Multi-Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS2

The inherent valley-contrasting optical selection rules for interband transitions at the K and K' valleys in monolayer MoS2 have attracted extensive interest. Carriers in these two valleys can be selectively excited by circularly polarized optical fields. The comprehensive dynamics of spin valley coupled polarization and polarized exciton are completely resolved in this work. Here, we present a...

متن کامل

Straining effects in MoS2 monolayer on nanostructured substrates: temperature-dependent photoluminescence and exciton dynamics.

Strain-engineering of two-dimensional (2D) transition metal dichalcogenides (TMDs) has great potential to alter their electronic and optical properties. Thus far, experimental studies of the straining effects in 2D TMDs primarily focused on the static property measurements at room temperature. However, low-temperature and temperature-dependence studies are essential in understanding the underly...

متن کامل

Effects of rhenium dopants on photocarrier dynamics and optical properties of monolayer, few-layer, and bulk MoS2.

We report a comprehensive study on the effects of rhenium doping on optical properties and photocarrier dynamics of MoS2 monolayer, few-layer, and bulk samples. Monolayer and few-layer samples of Re-doped (0.6%) and undoped MoS2 were fabricated by mechanical exfoliation, and were studied by Raman spectroscopy, optical absorption, photoluminescence, and time-resolved differential reflection meas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 9 1  شماره 

صفحات  -

تاریخ انتشار 2015